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1 Introduction

This paper examines human capital policies designed to alter the equilibrium distribu-

tion of education and their wider economic consequences. It also looks at the nature of

education decisions and the role that such decisions play in shaping life cycle earnings

and wealth profiles. Individual choices are analyzed in the context of a general equilib-

rium model with a spot job-market for each education group such that the unit price

of (efficiency-weighted) labor depends on an agent’s education and corresponds to its

marginal product.

We assess the effectiveness of policy interventions targeting the wider population

rather than limited groups, with relative labor prices endogenously adjusting to changes

in the aggregate supply of educated people1. We analyze existing policy instruments,

such as tuition transfers and loan subsidies2, but we also devise and evaluate alternative

forms of policy intervention. The policy experiments are carried out through numerical

simulations, with some of the model’s parameters directly estimated from PSID and

CPS data and others tuned to match specific long-term features of the US labor market.

By simulating and comparing equilibrium outcomes we aim to explore the quantitative

aspects of the relationship among human capital accumulation, wages inequality and

education policy. The impact of diverse education policies on equilibrium measures of

productivity, consumption and welfare is also analyzed.

Research linking HC investment to life cycle earnings dates back to original work by

Mincer (1958), Becker (1964) and Ben-Porath (1967). The first studies ignored the im-

portant issue of self selection into education, as described by Rosen (1977) and Willis and

Rosen (1979). Permanent and transitory individual characteristics are now acknowledged

as important determinants of education choices and have become a standard feature of

HC models.

Empirical evidence supporting the plausibility of a link between human capital accu-

mulation and economic inequality has been provided, among others, by Mincer (1994).

Studies on the evaluation of policy interventions are more recent. In a key contribution

to the empirical literature on education policy Keane and Wolpin (1997) study the par-

tial equilibrium effect of a tuition subsidy on young males’ college participation, while

Donghoon Lee (2001) generalizes their approach to general equilibrium. In related work,

1Admittedly, given that labor is bought and sold on spot markets,the demand for labor is always equal to the supply.
Alternatively, Acemoglu (1998) studies a model in which the demand for skills changes more than proportionally as a
response to the increase in the supply of skilled workers.

2Standard education policy is just one of the possible types of human capital policy. For example, changes in propor-
tional income taxation affect the life-cycle returns on HC and the opportunity costs of education, altring HC investment
decisions.

1



Heckman, Lochner and Taber (1998) estimate and simulate a dynamic general equi-

librium model of education accumulation, assets accumulation and labor earnings with

skill-biased technological change. Also Abraham (2001) examines wage inequality and

education policy in a GE model of skill biased technological change. All these studies

restrict labor supply to be fixed, although earlier theoretical research has uncovered in-

teresting aspects of the joint determination of life cycle labor supply and HC investment

(see Blinder and Weiss, JPE 1984).

Our model incorporates two twists with respect to earlier work: first, optimal indi-

vidual labor supplies are an essential part of the lifetime earnings mechanism; second,

agents’ heterogeneity has different dimensions, including a permanent ability component

and a transitory efficiency shock3.

Each agent in our model represents a household, which is intended as a family unit

with possibly more than one individual supplying labor. Recent empirical evidence

(Hyslop, 2001) indicates that labor supply explains little of the rising earnings inequality

for married men, but over 20 % of the rise in (both permanent and transitory) family

inequality during the period of rising wage inequality in the early 1980’s4. The response

in hours of work to changes in net wage is small for prime age male earners. However,

as pointed out by Eaton and Rosen (1980a) in their seminal work on taxation and

HC accumulation, even if taxes have only a limited impact upon the quantity of hours

worked it is possible that they have an important effect on their quality, intended as the

type of human capital. This happens because tax changes can alter the incentives for

education. Moreover, even if individual labor supplies do not deviate much from some

given levels, it is the case that such levels differ substantially between education groups:

for given market prices, work effort represents the intensity of human capital utilization

and individuals can self-select into education groups according to their preference for

leisure 5. Labor supply, therefore, represents an effective channel of adjustment to labor

price signals and an important determinant of the relative variations in skill prices6.

The other crucial twist in our model is the introduction of individual uncertainty

over the returns to HC in the form of idiosyncratic multiplicative shocks to labor effi-

ciency. As David Levhari and Yoram Weiss (1974) originally emphasized, uncertainty is

of exceptional importance in human capital investment decisions as the risk associated

to such decisions is usually not insurable nor diversifiable. Problems of moral hazard

can be extremely severe when insuring labor risk because idiosyncratic shocks and indi-

3Mortality risk is also explicitly included in the model.
4Hyslop (2001) also shows that labor supply explains roughly half of the modest rise in female inequality.
5To this purpose we include a state variable capturing permanent unobserved characteristics in our model.
6An example of the importance of differences among education groups in life time labor supplies come from earnings

taxation. Taxes on labor earnings reduce the return to HC investment but also the opportunity cost of being in education
represented by foregone earnings. When differences in lifetime labor supply between education groups are present, the two
effects are weighted by the relative intensity of HC utilization in the appropriate education group.
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vidual ability can be partially or completely unobservable to third parties. Given these

problems the market is not likely to provide insurance. Using a multiplicative form of

earnings risk7 Eaton and Rosen (1980a) show how earnings taxation has an ambiguous

effect on investment in human capital because it impinges on two important parameters

of the decision problem: for one, taxation reduces the riskiness of returns to human

capital investment8; in addition, taxation induces an income effect that can influence the

agents’ willingness to bear risk. Thus, ignoring the riskiness of education decisions can

partly sway the results in the analysis of the effects of earnings taxation and education

policies.

We consider three levels of education obtained through formal schooling and corre-

sponding to three types of HC separately entering the production technology9. Education

and employment are mutually exclusive in each period. Foregone earnings and tuition

charges are the direct costs of schooling, and a utility cost comes in the form of reductions

in leisure when studying.

Agents can accumulate real assets and we experiment with alternative ways to assign

assets to new borns10. We also consider different levels of correlation between ability and

initial assets holdings11.

In general, the model provides a way to look at endogenous equilibrium levels of

aggregate human capital, with associated wages, as a function of agents’ optimising

schooling choices and demographic factors; furthermore, it represents a mapping from

the initial agents’ distributions (that is, their distribution over states such as permanent

and persistent idiosyncratic shocks and assets) into distributions over educational and

economic attainments: this mapping turns out to be ideal to study the implications of

different education distributions.

2 Model12

We derive the optimal consumption and schooling choices for an individual of given

ability who supplies labor in a competitive market. A unique good is produced in the

economy, and it can be either consumed or used as physical capital. Different kinds of

7They multiply education specific earnings by a random variable.
8As the proportional tax rate increases, agents earn less from high realization of the shock but also lose less from the

bad ones. Therefore the overall risk is decreased.
9We distinguish among people with less than high school degrees (LTHS), high school graduates (HSG) and college

graduates (CG). The distinction between LTHS and HSG is based on different earning and labor supply characteristics.
Schooling is the only way to accumulate human capital (no children nurturing or on-the-job training). The possible effects
of OJT are accounted for through an age-efficiency profile which is estimated for each education group.

10Of special interest is the case when the initial distribution of wealth replicates that prevailing among people who died
in the previous period, as this has a realistic accidental bequest interpretation.

11This can be thought as a shortcut to incorporate the effect of parental background on ability formation, as extensively
documented in the literature (see Heckman and Carneiro, 2002, for a review).

12A detailed illustration of this (and similar) models can be found in Gallipoli (2004). This includes a discussion of the
implications of non-convexities of budget sets for existence and uniqueness of the solutions.
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human capital are an input to the aggregate production function and command different

returns. Wage differences among people are the consequence of differences in education

(between group inequality) and differences in labor efficiency (within group inequality).

We assume that people with different labor efficiencies are perfect substitutes within

schooling groups. Agents can accumulate assets representing ownership of physical cap-

ital.

2.1 Demographics and preferences

Each (non-altruistic) household starts life at age 1 and lives 50 periods, after which

death is certain13. Therefore the population consists of 50 overlapping generations and

the index j denotes age. Agents have a probability to survive in each period denoted

as sj and decreasing in age. Different specifications for sj, corresponding to alternative

assumptions regarding annuity markets, are considered. When annuity markets are

absent we use a random bequest mechanism to redistribute left-over assets: with negative

borrowing limits this opens up the possibility that people dye in debt14. Agents are faced

with education choices and base such choices on returns and costs of education given age,

asset holdings, permanent characteristics and labor shocks. Over their life cycle they

choose the labor supply path that maximizes their expected lifetime utility. Education

groups are denoted by e ∈ {e1, e2, e3}, with e = e1 the lowest and e = e3 the highest.

We denote individual permanent characteristics by θ ∈ [θmin, θmax] and let {z}50
j=1 be a

sequence of uninsurable idiosyncratic efficiency shocks.

In each period, agents choose their labor supply nj ∈ [0, 1] and consume remaining

leisure lj = 1 − nj. They also choose how much of their income to carry over to next

period in the form of assets aj+1. We assume that the amount of leisure enjoyed by stu-

dents is not a choice but rather a deterministic (increasing) function of their permanent

characteristics, defined as l = fS(θ). Assets bear a risk free net return equal to r, there

is a borrowing constraint such that aj ≥ amin for every j and a transversality condition

for agents reaching maximum age such that aj ≥ 0 if j > 50. Aggregate physical capital

is denoted as K and depreciates at rate δ.

Period utility u (c, l) is concave in consumption and leisure; it satisfies standard reg-

ularity conditions and in particular the Inada conditions15. Future utility is discounted
13No explicit retirement is considered, although people can choose not to supply any labor at later ages. We experiment

with different labor life lenghts.
14Lending without collateral to a person with a mortality risk is equivalent to providing insurance, as argued by Yaari

(1965).
15In the simulation we use utility of the CRRA class and are of the following type

u (cj , lj | dj = 0) =

[
cν
j l1−ν

j

]

1− λ

(1−λ)

u (cj | dj = 1) =

[
cν
j fe (θ)1−ν

]

1− λ

(1−λ)
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by a factor β > 0. The efficiency weighted labor supply of an agent is defined as

hj = εj (θ, e, z) nj = exp
(
θ + ξe

j + zj

)
nj (1)

where ξe
j is an efficiency profile depending on age and education.

The wage rate per efficiency unit of labor in education group e is denoted as we. Agents

pay proportional taxes τn and τk on, respectively, labor and asset income: the distinction

is kept to separately identify the effect of capital taxation on HC accumulation, which

summarises the substitutability between investments in education as opposed to assets16.

Schooling has a direct cost De and is subsidised through a transfer Te. Individual

bequests received by an household at age j as qj.

When annuity markets are absent, accidental bequests of assets are redistributed

among the youngest according to the density prevailing among those who died; alterna-

tive initial conditions for wealth are also considered17. When annuity markets are absent,

an exogenous initial wealth distribution is imposed.

The law of motion for the labor efficiency shocks is summarized by a transition func-

tion π denoted as πzj+1|zj
= π{zj+1 | zj}.

Given some initial conditions x̄1 for the state variables, the age 1 household’s utility

over sequences of consumption and leisure, c =
{
c1, ..., cj

}
and l =

{
l1, ..., lj

}
, is denoted

as U (x̄1, c, l) and can be written as the expected discounted sum of period utilities

U (x̄1, c, l) = Ez∈Z

50∑
j=1

Sjβ
j−1u (cj, lj) (2)

where Sj =
(∏j

i=1 si

)
. The period budget constraint is

cj + aj+1 = Raj + w̃enj (1− dj)− (De − Te) dj
18 (3)

where R = [1 + r (1− τk)], w̃e = we expεj(1− τne) and dj is a binary variable which is 1

if the agent is in education and 0 otherwise.

2.2 Household’s problem

Education choices depend on relative life-cycle returns to different education levels, cur-

rent pecuniary cost of schooling, utility cost of studying, current labor shock and asset

holdings (z and a)19.

16This effect was first noted by Heckman (1976). If we think of investment as a way to transfer resources intertemporally,
changing the price of intertemporal substitution affects the quantity and quality of investments.

17Gale and Scholtz (1994) show that inter vivos transfer for education represent only a part of total bequest. We ignore
this issue in this paper and redistribute all left over assets among the youngest.

19To keep the model as simple as possible we do not explicitly model the sector producing education. Instead we assume
that all payments made by agents towards their education are implicitly transformed into improvements in their education
status.
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To pass from education level e1 to education level e2 an agent has to spend in school

je2 successive periods20, and to pass from e2 to e3 an agent has to stay continually in

school for je3 periods21. No schooling is possible after e3 has been achieved22.

Given prices and direct cost of schooling, the binary function dj = dj (θ, e, z, a) de-

scribes schooling choice as a mapping from the space of individual states into the age j

employment set {0, 1}.
Individual bequests are also an individual state variable, but we model them as initial

(start-of-life) assets in order to reduce complexity. Conditional on the choice of entering

the labor market, the labor supply policy of an agent is nj = nj (θ, e, z, a | dj = 0). Using

the intratemporal margin condition it is possible to express the individual labor supply

as a function of optimal consumption and real wage23.

2.3 Optimality and value functions

Without conditioning on the current education decision, the optimal policy of an agent

can be represented as a vector pj = (dj, aj+1), where aj+1 is the optimal saving policy

and dj the binary education decision.

We use value functions to characterize the optimal path24. A functional equation is

an equivalent and unique approach to the household’s sequence problem.

The functional equation can be written as

J (xj, pj−1) = sup
pj

v (pj) + sjβ
j−1

∫

Z

πzj+1|zj
J (xj+1, pj) dzj+1 (4)

for given initial condition x̄1.

Gallipoli (2004) shows that a a value function J∗ (xj, pj−1) satisfying the functional

equation (4) exists and we call J∗ (xj, pj−1) the unconditional value function because it

is defined over all the possible education choices.

In order to fully characterize the unconditional value function it is helpful to con-

sider the two conditional value functions which are obtained by assigning a value to

the (current) binary choice dj; the conditional versions of J∗ (xj, pj−1) are the value of

employment when dj = 0 , and the value of education when dj = 1.

20An additional state variable in the dynamic optimization problem of each agent is therefore the number of previous
years of education already under their belt: for simplicity we do not use additional notation for it, although this variable
implicitly determines future budget constraints and utility.

21In the calibration exercise we set the lenghts of the required study spells to match the main features of the educational
system under investigation.

22We restrict agents not to go back to school after becoming employed, but we also run some experiments where this
restriction is removed.

23The analytical details of the labour/leisure intertemporal choice are provided in the ‘Preferences’ section of the
Appendix.

24In this section we use an hyphen ”′” to identify next period unknown values and often omit the age/time subscripts
for notational simplicity.
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We denote the conditional value function as J∗ (xj, pj−1 | condition), with the condi-

tion being the value of dj
25. The unconditional functional equation J∗ (xj, pj−1) is the

upper envelope of the conditional values of employment and education. Without loss of

generality, we can reduce the complexity of the value functions associated to different

kinds of employment by making the choice of employment sector irreversible (this is

equivalent to assume that the costs of reverting to different, feasible ‘careers’ are suf-

ficiently high). Of course if agents have to possibility to return to education after a

working spell they can choose a different employment sector.

The conditional value of employment is denoted as J∗ (xj, pj−1 | dj = 0) = Wj(θ, e, z, a)26

and is unique. If we restrict agents to never return to education after working spells,

this value is defined as

Wj(θ, e, z, a) = max
a′,n

u (c, 1− n) + sjβ

∫

Z

πz′|z Wj+1 (θ, e, z′, a′) dz′ (5)

In the class of employment value functions special attention must be devoted to the

value function of newly employed agents. This conditional value is

J∗ (xj, pj−1 = (1, aj) | dj = 0) = max
e
{Wj(θ, e, z, a)}emax

e=e1
(6)

where emax is the agent’s education level. It is evident that the conditional value of

first-time employed equals the highest employment value among those available, and is

therefore subject to (5).

In this case it is possible to prove that the conditional value function of employment is

monotonous, concave and smooth, and the optimal policy is single valued and continuous.

The next step is to examine the conditional value of education, that we call Vj. The

conditional value Vj(θ, e, z, a) for education participants with e < e3 exists, is unique and

is defined as27

J∗ (xj, pj−1 | dj = 1) = Vj(θ, e, z, a) = max
a′

u (c, fe (θ)) + (7)

+sjβ

∫

Z

πz′|z max
{
Vj+1(θ, e

′, z′, a′), {Wj+1 (θ, e, z′, a′) }emax

e=e1

}
dz′

where emax is the education level of the agent. Both Vj and Wj are subject to (3). The

conditional value of education for people with e = e2 and in their last year of education

is such that Vj+1(θ, e
′, z′, a′) < Wj+1 (θ, e, z′, a′) for any e, which satisfies the assumption

that no further schooling is possible for people with the highest level of education.28

25Such notation allows to summarize education status for the last 2 periods (dj−1 and dj).
26The full expression of this value function is Wj(θ, e, z, a, ; µ, R) because the distribution of the population over states µ

and the exogenous interest rate R , that are given at the beginning of each time period, determine the returns to different
production factors.

27Also in this case the extensive form of the value expression is Vj(θ, s, z, a; µ, R).
28Some interesting properties are associated to the value function of education. Details in Appendix.
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The education value is not generally concave, but only piece-wise concave with respect

to assets. This is potentially troubling because it raises issues of non-uniqueness of the

optimal policies. This and related issues are discussed in the Appendix.

When agents are allowed to go back to education, the discounted value of the future

in (5) must be extended to include the value of additional education.

Therefore, the unconditional choice problem of an agent with e = e2 is

max
{aj+1,dj}

{Vj,Wj}

We call this the unconditional problem because we are not restricting the value of dj.

Given a set of individual states, it might happen that there exist two different {aj+1, dj}
such that Vj = Wj. The corresponding state-space locations are special types of switch

points of the unconditional choice problem: they occur if one conditional value function

strictly dominates the other everywhere but at the switch points,where they are equal.

This sgives the unconditional value function a peculiar butterfly shape.

To guarantee that education decisions are always uniquely determined, we assume

that whenever the present value of education is at least as large as the present value of

employment, education is chosen over employment. Using this assumption and the set

of results obtained for the conditional optimal policies, we argue that the unconditional

optimal policy is uniquely determined and piecewise continuous.

The discontinuities in the asset policies occur at the switch points because of the

jumps in marginal utility at such locations. Nonetheless, the optimal policy duplet

pj = (aj+1, dj) is continuous between successive switch points.

2.4 Aggregate variables

We study equilibrium allocations and assume a stationary population. We summarize

the aggregate state of the economy by looking at aggregate physical capital K, efficiency-

weighted labor supplies (referred to as human capital aggregates) H1, H2, and H3, and

defining the measure space (X,z (X) , ψj), where X is the individual state space.29

For each set F ⊆ z (X), let ψj represent the normalised measure of age j agents whose

individual states lie in F as a proportion of all age j agents. Calling ζj the fraction of

age j agents in the economy we define

µ = µ (F, j) = ζjψj (F )

which is a measure of agents belonging to age group j with individual state vector

(θ, e, z, a) ∈ F .30

29X = Θ×=× Z × Ā and z (X) = z (Θ)×z (=)×z (Z)×z (
Ā

)
is its sigma-algebra.

30µ is a measure on (Γ,z (∆)), where z (∆) is the Borel σ-algebra on ∆ = Υ × X = Υ × Θ × = × Z × Ā, defined as
z (∆) = z (∆)×z (Θ)×z (=)×z (Z)×z (

Ā
)
. Ergo, for any given B ∈ z (∆), µ (B) indicates the mass of agents whose

individual state vectors lie in B.
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The aggregate states determine the marginal relative return to physical capital and

human capital varieties in the economy.

We also assume that the distributions of permanent individual characteristics θ and of

idiosyncratic shocks z are independent of time and cohort. The demographics are stable,

so that age j agents make up a constant fraction ζj of the population at any point in

time. The ζj values are normalised to sum up to 1 and are such that ζj+1 = sjζj.

2.5 Markets structure

We use the unique good as the numeraire. Such good can be either consumed or saved.

In this economy savings a represent ownership rights over physical capital K. We do

not model entrepreneurial choices directly, but we maintain that entrepreneurs behave

optimally in managing firms. We let the interest rate r be exogenous so that total asset

holdings in the economy
∑

j ζj

∫
Ā

aj dψj (a) does not necessarily equal the amount of

physical capital K. We residually define the difference between total asset holding and

physical capital employed as FX (r) = K (r)−∑
j ζj

∫
Ā

aj dψj (a).

Positive FX represents the amount of foreign-owned capital that is present in the

economy, whereas negative FX represents the amount of foreign activities owned by

households.

With missing annuity markets, the assets left behind by agents who die at age j are

distributed to the youngest age group according to the density law prevailing among age

j agents.

Given differential mortality and life-cycle assets savings, the various age groups be-

queath different assets distributions to the new borns, so that

ψ1 (a) =

j−1∑
j=1

ζj (1− sj)∑j−1
j=1 ζj (1− sj)

ψj+1 (a) (8)

where ψj (a) denotes the age j marginal assets density3132.

Let qj denote individual bequest at age j. The bequest mechanism described above

is such that

E (q1) =

∫

Ā

ψ1 (a) a1da (9)

qj = 0 for j = 2, ..., j

31This is defined as

ψj+1 (a) =

∫

X
ψj+1 (θ, e, z, a) dθdedz

32This bequest mechanism has the desirable feature of making the age 1 assets density depend on the older ages assets
densities generated in equilibrium, but we also experiment with exogenous initial assets densities.
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and the amount of wealth that is bequetted in each period is33

ζ1

∫

Ā

ψ1 (a) a1da =

j−1∑
j=1

ζj (1− sj)

∫

Ā

aj+1ψj+1 (a) da

In the simulations we also experiment with different degrees of correlation between

start-of-life asset holdings and idiosyncratic talent θ, and consider cases in which ψ1 (a, θ) 6=
ψ1 (a) ψ1 (θ). Imposing different patterns of dependence between such marginal densities

turns out to be useful if ability is correlated with socio-economic background factors such

as family wealth.

We do not consider involuntary unemployment in this model, however people can

choose to consume all their leisure endowment if, for example, the market value of their

time is too low.

2.6 Technology

Firms maximize profits using a constant returns to scale technology and set wages com-

petitively. The inputs to the aggregate production function are physical capital and

three kinds of HC corresponding to different levels of schooling, so that F (H,K) with

H = {H1, H2, H3}. The relationship between human and physical capital is expressed

as a Cobb-Douglas function with a nested component modelling the interaction among

different kinds of HC:

F (H, K) = ĀH1−αKα (10)

Ā is an aggregate productivity coefficient34 and the general, unconstrained definition of

the HC input is

H = {A1H
ρ
1 + A2H

ρ
2 + A3H

ρ
3}

h
ρ (11)

with h = 1 given the CRS assumption.35

In this specification (A1, A2, A3) are share parameters, while ρ pins down the Allen

elasticity of substitution among different weigthed labor inputs. In the CES case, we

the Allen elasticity of substitution between any two inputs is 1
1−ρ

.36 When ρ is equal

to zero the technology is Cobb-Douglas, whereas values of ρ greater than zero indicate

more substitutability than in the Cobb-Douglas case.

33In reality, only a part of intra-family wealth transfers are intra-vivos. For a discussion of related issues see Gale &
Scholtz, 1994.

34In the simulations we normalize A to one.
35For strict quasi-concavity of the production function ρ has to lie within (−∞, 1).
36The Allen partial E. of S. is also known as the Allen/Uzawa E. of S. and is the most widely used. However, Blackorby

and Russell (AER 1989) show that there is no intution about what it measures. Blackorby and Russell advocate the use
of the so-called Morishima E. of S., and another alternative for multisector models would be the so-called direct E. of S.
proposed by McFadden. In what follows we just use the Allen E. of S. as a simple approximation.
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An alternative and interesting specification is37

H =
{

A1H
ρ1

1 + [A2H
ρ2

2 + A3H
ρ2

3 ]
ρ1
ρ2

} 1
ρ1

which has a symmetry property imposing that the elasticity of substitution between H2

and H3 is the same as the that between H3 and H1. Therefore, if ρ2 > ρ1 we have that

H3 is more complementary with H1 than with H2. Also, the grouping allows separate

parts of the above technology to be Cobb-Douglas, when either ρ2 or ρ1 tend to zero.

The equilibrium conditions require that marginal products equal pre-tax prices so

that we = ∂F
∂He

for any education level e, and r + δ = ∂F
∂K

. The total stock of human

capital of type e, He, is the sum of the efficiency weighted individual labor supplies of

type e

He =
∑

j

ζj

∫

X

hj (x) dψj (x) =
∑

j

ζj

∫

X

εj (θ, e, z) nj (x) dψj (x)

where ψj (x) = ψj (θ, e, z, a).

We can also express the marginal condition for physical capital FK = r + δ as

r + δ =
∂F

∂K
= α

(
H

K

)1−α

(12)

2.7 Government

We assume that the government obtains its revenues from proportional taxation of labor

and asset income at respectively τne and τk rate, and uses part of the revenues to subsidise

education via a transfer Te. We call G the residual non-education general government

expenditure and assume that G is lost in non productive activities. The government’s

behaviour is fully described by the budget constraint

G +
∑

j

ζj

∫

X

Tedj (x) dψj (x) = (13)

=
∑

j

ζj

∫

X

[1− dj (x)] τnewehj (x) dψj (x) +
∑

j

ζj

∫

Ā

rτkaj dψj (a)

which requires that expenditures equal revenues obtained from taxation38.

3 Equilibrium

We use a notion of equilibrium in which the measure µ (x, j) remains unchanged over

time. This notion of equilibrium is known as stationary recursive competitive equilibrium

37Hamermesh (1993) attributes this ‘grouping’ production function to Sato (1967).
38We assume that the government has a balanced budget in each period.
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(SRCE, Lucas, 1980). In Appendix A there is a brief description of the steps required to

define a stationary measure ψj, such that µ (x, j) = ζjψj (x) is stationary, as a function

of the markov process π{zj+1 | zj} and of the decision rules dj (x) and aj+1 (x) where

x ∈ X.

3.0.1 Equilibrium definition

Given an exogenous interest rate r, equilibrium definitions in the asset and good markets

must include cross border asset holding FX. Let (X,z (X) , ψj) be an age-specific

measure space with state space X = Θ×=× Z × Ā and z (X) a σ-a lg ebra on X.

Given some state vector x ∈ X and r, a stationary equilibrium for this economy is

a set of decision rules dj (x), aj+1 (x), cj (x), nj (x), value functions Vj(x), Wj(x), price

functions we (µ, r), e ∈ =, densities
(
ψ1, ..., ψj

)
and

(
ζ1, ..., ζj

)
, and a law of motion Q,

such that:

1. dj (x), aj+1 (x), cj (x) and nj (x) are optimal decision rules and solve the household’s

problem, given r.

2. Vj(θ, e, z, a), Wj(θ, e, z, a) are the associated value functions.

3. Firms choose capital and human capital in such a way that

we = FHe for e ∈ =
r + δ = FK

4. ψj (x) is a stationary measure, that is ψj (F ) = Q (F, ψj), where Q (·, ·) is the law

of motion of ψj (·) and is generated by the optimal decisions dj (x), aj+1 (x), cj (x).

Given ζj , also µ (x, j) = ζjψj (x) is a stationary measure.

5. The following equalities hold in the good, asset and labour markets

G +

j∑
j=1

ζj

[∫

X

cj (x) dψj (x) +

∫

X

aj+1 (x) dψj (x)

]
+ rFX =

= F (H, K) +
∑

j

ζj

∫

Ā

aj dψj (a)− δK −
∑

j

ζj

∫

X

dj (x) De dψj (x)

∑
j

ζj

∫

Ā

aj dψj (a) = K (r)− FX (r)

∑
j

ζj

∫

X

expεj(θ,e,z) nj (x) dψj (x) = He ∀e ∈ =
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We have derived the goods market clearing equation by integrating the individual

budget constraint; in the Appendix we show the analytical steps that deliver the goods

market equilibrium condition.

4 Identification and Estimation

We assign values to a set of production and efficiency parameters by directly estimating

them from US data. This section describes the procedures used to identify and estimate:

• education specific age-earning profiles and skill prices;

• idiosyncratic labor shocks and their law of motion;

• the empirical density of idiosyncratic permanent ability θ over the working popula-

tion;

• the aggregate technology parameters determining shares and substitution elasticities

for different aggregate inputs.

Different data sets are used in the process. It must be stressed that we refer to ability

as a set of both observable and unobservable characteristics that have a direct impact

on households’ earnings but are not explicitly modelled.

4.1 Estimating wage equations: skill prices and age profiles

Skill prices and age-earning profiles can be estimated by imposing some structure upon

the data, which we do by using our equilibrium model. For each education group we

study a wage equation that is consistent with the individual earning mechanism in our

model. The (log-linear) specification of individual hourly wages is therefore

ln wit = wt + g (ageit) + uit (14)

where uit = θi + zit + mit. In this notation wit denotes the observed hourly wage rate

for individual i at time t, wt is a (time dependent) hourly return to the specific human

capital type, θi is an individual ability component, g (ageit) is some function of age and

zit is an idiosyncratic transitory shock, possibly autocorrelated. Finally, the term mit de-

notes measurement error components in wage rates, which for identification purposes are

assumed to be uncorrelated across time and orthogonal to all observed and unobserved

characteristics.

Our steady state model does not include any time variation, however time varying

prices wt are of pivotal importance for the identification of age effects, residual terms

and, in a different context, to pin down the time series of HC aggregates. Since we are

primarily interested in non-demographic determinants of educational decisions, we do
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not model cohort effects explicitly. Furthermore, idiosyncratic abilities are correlated

with both educational choices and observed wage rates. By estimating a distinct wage

equation for each education group we control for the education self-selection problem, but

heterogeneity in unobserved characteristics still represents an obstacle to identification39.

Assuming linearity of permanent error components, we identify our model parameters

by adopting a within group specification for wage equations. We estimate the following

specification

(ln wit − ln wi) = (wt − w) + g (ageit − agei) + (uit − ui) (15)

where the bars denote (individual) time averages. This delivers unbiased and consistent

estimates of time effects and age profiles40.

4.2 Wage data and results

For the estimation of wage equations we use longitudinal data from the PSID. The sample

is based on annual interviews between 1968 and 1997 and on bi-annual interviews from

1999 onwards. All interviews are retrospective, providing data on the previous year.

The sample for this study combined a cross-section sample of nearly 3,000 families,

representative of the US population, selected from the Survey Research Center’s master

sampling frame, and a subsample of about 1,900 families interviewed previously by the

Bureau of the Census for the Office of Economic Opportunity. The subsample drawn from

the OEO-Census study was limited to low-income families, and compensatory weights

were developed in 1968 to account for the different sampling rates used to select the OEO

sample component as opposed to the SRC component41. A subsample of Latino (Latin

American origins) families was added in 1990 and dropped in 1995. Additional immigrant

families were added in 1997 and 1999. Moreover, in 1997 some families belonging to the

OEO-Census sample component were dropped.

We do not use individuals associated with the Census low income sample, the Latino

sample or the New Immigrant sample42 and focus instead on the SRC core sample, which

did not suffer any substantial additions or reductions between 1968 and 2001 and was

originally representative of the US population.

39We do not include return to experience. Experience is the difference between age and years of schooling, and agents
belonging to a given education group have roughly the same number of years of schooling. Therefore the age effects end
up capturing returns from experience as well as seniority.

40A normalization of the estimation results is necessary to obtain age-earning profiles, skill prices and estimates of
permanent heterogeneity. These are then used in numerical simulations. The normalization is bound to be arbitrary
because we don’t have any ‘metric’ to measure and compare the relative contributions of age, skills and permanent
heterogeneity in determining the final wage rate. A description is included in the Appendix.

41In fact the original 1968 wave data must be weighted unless one uses only the SRC representative cross section sample.
42Lillard and Willis (1978) make the case that the SEO low income sample should be dropped because of endogenous

selection problems.
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The main earnings’ variable in the PSID refers to the head of the household43 and

is described as total labor income of the head44. We use this measure, deflated by the

CPI-U for all urban consumers, as the reference earning variable. By selecting only

heads of household we ignore other potential earners in a family unit and restrict our

attention to people with strong attachment to the labor force45. Using heads to approx-

imate households’ behavious finds some support in recent work by Hyslop (2001), who

provides evidence of very strong and positive assortive matching by couples46 and shows

that such matching is based on permanent individual characteristics. Moreover, the per-

manent idiosyncratic characteristics upon which the assortive matching depends show

significant and strong positive correlation with family permanent income and earnings.

We conclude that the sample of households’ heads provides a good approximation to the

real households’ distribution over permanent characteristics, earnings and income.

Information on the highest grade completed is used to allocate individuals to three

education groups: less than high school, high school graduates and college graduates,

respectively denoted as LTHS, HSG and CG. A detailed description of our sample se-

lection is reported in the Appendix: in brief, we select heads of household aged 25-60

who are not self-employed and have positive labor income for at least 8 (possibly non

continuous) years.

Based on our final PSID sample, figures () and () plot the evolution of mean and

variance of log annual earnings over time for each education group (LTHS, HSG and

CG) and for the whole sample (ALL). The plots show that average annual earnings have

experienced a drop in real values during the early 1980s. A steep recovery occurred during

all of the 1990s, but this was not sufficient to bring real earnings of lower education groups

back to their pre-1980s levels47. The 1980s’ drop in real earnings was accompanied by

higher dispersion: a visual inspection suggests, however, that the variance of earnings of

the least educated has not substantially changed in the 30 years span considered, whereas

for college graduates there seems to be some upward trend in earnings dispersion. As

college graduates represent an ever increasing share of the workers over time, the pooled

variance of earnings seems to be upward trended. This behaviour of the pooled variance

is consistent with previous empirical evidence.

43In the PSID the head of the household is a male whenever there is a cohabiting male/female couple. Women are
considered heads of household only when living on their own. We do not address the related sample issues explicitly, but
any gender effects are likely to be captured in the ability estimates.

44This includes the labor part of both farm and business income, wages, bonuses, overtime, commissions, professional
practice and others. Labor earnings data are retrospective, as the questions refer to previous year’s earnings, which means
that 1968 data refer to 1967 earnings.

45In this way we exclude those individuals who tend to participate only during expansions and whose transitory wage
component tends to be relatively larger.

46Positive assortive matching means that individuals tend to find partners who have similar permanent characteristics
such as education, taste for leisure and cognitive ability. This evidence is based on a sample of US couples observed in the
PSID over the 1979-1985 period.

47This can be in part explained by progressive self-selection of more able people out of the lowest education group.
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(Figure 1)

We use real hourly wage rates as dependent variable in the wage equations. Figures

() and () report the evolution of hourly wage rates for the sample groups. While the

pattern of the average hourly wage rates over time is very similar to the one of yearly

earnings, the evolution of variance over time is much more trended, especially for the

group of High School graduates. This can be interpreted as evidence that labor supply

plays some role in smoothing earnings over time.

(figure 2)

(figure 3)

We estimate a wage specification as in(15) and use a 4th degree polynomial in age to

approximate the possibly non linear g (ageit) functions. The age polynomials’ coefficients

are presented in table (1).

Table 1: Age polynomials’ coefficients
Dependent variable: log hourly earnings
coeff. point estimate S.E.

Education=LTHS
age 0.0412505 .0081143
age2 -0.0004179 .0000905

Education=HSG
age 0.4928285 0.1071015
age2 -0.0162768 0.0039883
age3 0.0002413 0.0000644
age4 -1.34e-06 3.82e-07

Education=CG
age 0.8697329 0.1560285
age2 -0.0282 0.0058548
age3 0.0004149 0.0000953
age4 -2.30e-06 5.69e-07

Figure (??) plots the age profiles implied by the polynomial estimates for different

education groups.

(figure 4)

By fitting the within group specification of the wage equation we also obtain estimates

of the year specific price effects, which are plotted in figure (). The time effects have a

natural interpretation as time varying prices of skills associated to different education

groups and can be used to identify the supply of human capital in the economy. In the

Appendix we describe the procedure that we use to normalize the estimates of age, time

and fixed effects.

(figure 5)
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4.3 HC Aggregates and Education Specific Labor Inputs

Consider the problem of studying the production function in equation (10). From na-

tional accounts data we can obtain long time series of aggregate output

Yt = F (H1t, H2t, H3t, Kt)

We also have observations on aggregate physical capital, Kt, and the wage bills that are

paid in each year to different education groups (denoted as WBe
t )

48.

In order to retrieve technology parameters it is necessary to identify and estimate

HC aggregates, Het
49, which are defined (see eqt. ??) as an efficiency-weighted sum of

individual labor supplies. The crucial question is whether we can recover (H1, H2, H3)

for a reasonably long number of periods.

Our approach is to identify (H1, H2, H3) by combining the observable wage bills

(WB1,WB2,WB3) and the estimated year specific skill prices, wet. In fact, by defi-

nition we have that

WBe
t = wetHet (16)

and we can identify HC aggregates by using the estimated time series of skill prices ŵet

obtained from the wage equations.

The main problem with this identification procedure is a data measurement problem:

in the US fringe benefits and other employer’s contributions are often not recorded as

straightforward earnings50 and can account for a sizeable proportion of yearly earnings.

Furthermore, they are likely to represent different proportions of total earnings in differ-

ent education groups, and tend to be higher for college graduates. This might lead to

and underestimate of the aggregate human capital for the higher education groups.

4.4 Combining CPS data and PSID estimates

(figure 6)

The wage bills should reliably represent the distribution of US working population

over education groups in each year. For this reason we use CPS data: the Current Pop-

ulation Survey (CPS) is a monthly survey of about 50,000 households conducted by the

Bureau of the Census for the Bureau of Labor Statistics.51 This monthly survey of house-

holds is conducted for BLS by the Bureau of the Census through a scientifically selected

sample designed to represent the civilian noninstitutional population. Respondents are

48The (yearly) wage bill for a given education group is the total earning payments received by people of that education
group in a given year.

49The subscripts e and t stand for human capital type (as implied by the educational level) and date of observation.
50An example, pointed out to us by Ken Judd, is that of employer’s pension contributions which can account for over

10% of yearly earnings.
51The survey has been conducted for more than 50 years. Statistics on the employment status of the population and

related data are compiled by BLS using data from the Current Population Survey (CPS).
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interviewed to obtain information about the employment status of each member of the

household 15 years of age and older. Each month about 50,000 occupied units are eligi-

ble for interview. Some 3,200 of these households are contacted but interviews are not

obtained because the occupants are not at home after repeated calls or are unavailable

for other reasons. This represents a noninterview rate for the survey that ranges between

6 and 7 percent. In addition to the 50,000 occupied units, there are 9,000 sample units in

an average month which are visited but found to be vacant or otherwise not eligible for

enumeration. Part of the sample is changed each month. The rotation plan, as explained

later, provides for three-fourths of the sample to be common from one month to the next,

and one-half to be common with the same month a year earlier. The CPS has been used

to collect annual income data since 1948, when only two supplementary questions were

asked in April: ”How much did ... earn in wages and salaries in 1947 ...” and ”how much

income from all sources did ... receive in 1947.” Over the years, the number of income

questions has expanded, questions on work experience and other characteristics have

been added, and the month of interview relating to previous year income and earnings

has moved to March. This yearly survey goes under the name of March CPS Supplement.

Today, information is gathered on more than 50 different sources of income, including

noncash income sources such as food stamps, school lunch program, employer-provided

pension plan and personal health insurance. Comprehensive work experience information

is given on the employment status, occupation, and industry of persons 15 years old and

over. Age classification is based on the age of the person at his/her last birthday. The

adult universe (i.e., population of marriageable age) is comprised of persons 15 years old

and over for March supplement data and for CPS labor force data. Each household and

person has a weight that should be used in producing population-level statistics. The

weight reflects the probability sampling process and estimation procedures designed to

account for nonresponse and undercoverage. Unweighted counts can be very misleading

and should not be used in demographic or labor force analysis.

We use the CPI for all urban consumer (with base year in 1992) to deflate the CPS

earning data and drop all observations that have missing or zero earnings. Since the

earning data are top-coded for confidentiality issues, we have extrapolated the average of

the top-coded values by using a tail approximations based on a Pareto distribution. This

procedure is based on a general approach to inference about the tail of a distribution

originally developed by Bruce Hill (1975). This approach has been proposed as an

effective way to approximate the mean of top-coded CPS earning data by West (1985);

Polivka (2002) provides evidence that this method closely approximates the average of

the top-coded tails by using undisclosed and confidential non top-coded data available

at the BLS.

Figure () reports the number of people working in each year by education group. It
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is clear that some strong and persistent trends towards higher levels of education have

characterized the sample period. Figure () plots both the average earnings by year and

education group in levels based on the CPS. Since CPS earning data until 1996 are

top coded we report both the censored mean and a mean adjusted by using a method

suggested by the BLS (West,1984) which is based on the original Hill’s estimator to

approximate exponential tails. The difference between the two averages is larger for the

most educated people who tend to be more affected by top-coding. We include also

self-employed people in the computation of these aggregates; however, their exclusion

has almost no effect on the value of the wage bills and human capital aggregate, as they

never represent more than 5% of the working population in a given education group (and

most of the times much less than that). Figure () plots the wage bills (in billion of 1992$)

by year and education group. Dividing the wage bills by the exponentiated value of the

time effects estimated through the wage equations using PSID data we finally obtain the

human capital aggregates, that are plotted in figure ().

(figure 7)

Using the time effects ŵet estimated through the wage equations we provide point

estimates of the different HC aggregates by year: this estimates are presented in figure

().

(figure 8)

4.5 Distribution of permanent characteristics

We ‘residually’ identify ability θi, whose estimate is denoted as θ̂i, from the sequence

of agent-specific residuals associated to the wage equation (14)52. We resort to the fact

that

ln wit = wt + θi + g (ageit) + eit

and compute

θ̂i =

∑T (i)
t=1 ln wit − ŵt − ̂g (ageit)

T (i)
≈ θi

where T (i) is the total number of observation on agent i. If we assume that the un-

conditional distribution of ability has not changed over the time period covered by our

sample, we can use the estimated fixed-effects as an estimate of the distribution over the

working population of the ability to earn.

Under this specification the individual fixed effects θi capture all omitted sources

of permanent heterogeneity which have some effect on individual earnings: they range

52The so-called incidental parameters problem affects the FE estimates: limited panel lenght is responsible for FE
estimation bias. The fact that our estimates rely on people who are observed at least for 8 years will partially reduce the
bias.
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from observable characteristics such as gender, cohort and race to non-observable char-

acteristics such as cognitive ability and family incentives; in this sense, the resulting

distribution of estimated fixed effects can be thought of as a single-index summary of

multi-dimensional heterogeneity.

These forms of heterogeneity constitute an essential part of the individual ability to

earn that is not due to age or price effects and it is important to include such forms

of heterogeneity in the estimated measure of idiosyncratic ability which are used in

numerical simulations53.

We have estimated this distribution using both the large sample covering the period

between 1967 and 2000 and the smaller sample for which Release II data are available

covering the period 1968-1993. Furthermore, we have checked whether weighting the

estimated θ̂ using PSID longitudinal weights would change the estimated empirical fre-

quencies of ability.

(figure 9)

In figure () we report the empirical frequencies of θ̂. Changing the lenght of the

sample and using weights does not introduce any substantial variation on both shape

and location of the density.

4.6 Analysis of labor efficiency shocks

The wage equation residual, rescaled by removing the permanent ability component,

varies along time and across individuals and is defined as

ũit = wit − g (agenorm
it )− wnorm

t − θnorm
i

We assume that ũit can be decomposed as

ũit = zit + mit

where zit is an autocorrelated error process and mit is classical measurement error

iid (0, σ2
m).

If we model the autocorrelated z process as

zit = ρzit−1 + εit

with εit˜iid (0, σ2
ε), we can achieve identification of the autoregressive parameters in one

of several ways. A first possibility is to use the following second moments

53It must be noticed that our estimates can provide an estimate of the unconditional distribution of the ability to earn,
but cannot be used to infer information about the conditional distributions of ability in each education group because
the longitudinal PSID sample that we select fails to represent the marginal densities of the US population over age and
education. This problem becomes more severe the further away we go from the original sampling date. However, granted
that our sample selection technique is mostly orthogonal with respect to ability, we can confidently use the estimated
emnpirical density as an approximation.
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V AR (ũit) = V AR (zit) + V AR (mit)

COV (ũit, ũit−1) = COV (zit, zit−1)

where

V AR (zit) =
σ2

ε

1− ρ2

COV (zit, zit−1) =
ρσ2

ε

1− ρ2

and compute54

ρ =
COV (zit, zit−1)

V AR (zit)
=

COV (ũit, ũit−1)

V AR (ũit)− V AR (mit)
(17)

Of course an external estimate of V AR (mit) is necessary in this case. An alternative

way to identify the autoregressive coefficient without resorting to an external estimate

of V AR (mit) is available whenever we can assume classical measurement error: in fact,

this implies

ρ =
COV (zit, zit−2)

COV (zit, zit−1)

We can estimate both a unique autoregressive coefficient ρ for all education groups

and a set of group specific ρedu.
55

Furthermore, we can compute

ũit − ρ̂ũit−1 = ε̂it = (zit − ρ̂zit−1) + (mit − ρ̂mit−1) = εit + (mit − ρ̂mit−1) (18)

The moments of the constructed residual ε̂it are

V AR (ε̂it) = σ2
ε +

(
1 + ρ̂2

)
σ2

m

COV1 (ε̂it) = −ρ̂2σ2
m

COVj (ε̂it) = 0 j ≥ 2

and can be used to test the goodness of the specification we assume for the z process.

54In fact if the above specification is correct then we have that

V AR (ũit) =
σ2

ε

1− ρ2
+ σ2

m

COVj (ũit) =
ρjσ2

ε

1− ρ2
j ≥ 1

55Estimates are based on non weighted residuals, as weighting would not add any information, since heterogeneity is
factored out of the errors by construction.
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4.7 Estimation and Testing of Labor Shock Processes

The estimated autoregressive (ρ) coefficients and their (bootstrapped) standard error are

presented in the following table. Higher persistence is associated with higher values for ρ̂

: higher persistence can be interpreted as a less insurable kind of shock and corresponds

to a more volatile lifecycle pattern for earnings.

Table 2: Estimates of the autoregressive coefficient ρ̂ , by education group and pooled. Bootstrapped
S.E. in parenthesis

Group 1 Group 2 Group 3 Pooled

0.651 0.557 0.608 0.584
(0.130) (0.042) (0.058) (0.034)

The estimated values for ρ̂ seem to indicate that group 2 (High school graduates)

experience the lowest earnings’ risk. The associated

Instruments’ Choice

In what follows we present some results obtained by applying the above method to the

log-linearized version of the production function in which we set the elasticity parameters

of the CES to zero (that is r = s = 0).

We find that a GMM procedure applied to the unrestricted CES specification provides

poor, scarcely robust and highly insignificant estimates for all technology parameters. On

the other hand, a restricted (r = s = 0) CES technology delivers a Cobb-Douglas spec-

ification of the form F (H) = HA
3

(
HB

2 H1−B
1

)1−A
expf which can be easily log-linearized

as

ln F (Ht) = A ln H3t + (1− A) [B ln H2t + (1−B) ln H3t] + ft

and given the small sample dimension (30 observations) this linearization makes the

GMM procedure more robust and reliable. In fact, in a C-D specification it does not

matter whether H2 is nested with H1or H3. Such distinction would matter only in a

CES specification.

In order to explicitly model possible error correlation we assume that

ft = θft−1 + εt

εt i.i.d.

If we then denote A ln H3t + (1− A) [B ln H2t + (1−B) ln H3t] as X ′
tβ , we can redefine

the residuals to be used in computing the empirical moments as

εt = ln F (Ht)− ρ ln F (Ht−1)−X ′
tβ + ρX ′

t−1β (19)

and by doing so we explicitly control for the time correlation of ft.
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Table 3: Autocovariances of labor shocks for Education group 1 (LTHS), by year and pooled. Asymptotic
standard error in parenthesis.

year Lag 0 Lag 1 Lag 2 Lag 3 year Lag 0 Lag 1 Lag 2 Lag 3

1968 .0604 1983 .0626
(.008) (.0120)

1969 .0757 1984 .0919
(.0137) (.0199)

1970 .0490 1985 .0849
(.0071) (.0188)

1971 .0541 1986 .0983
(.0119) (.0188)

1972 .0471 1987 .0915
(.0109) (.0167)

1973 .0402 1988 .0967
(.0047) (.0215)

1974 .0446 1989 .1148
(.0056) (.0294)

1975 .0604 1990 .0687
(.0084) (.0121)

1976 .0696 1991 .0762
(.0107) (.0145)

1977 .0780 1992 .0844
(.0198) (.0147)

1978 .0729 1993 .1356
(.0121) (.0473)

1979 .0609 1994 .0638
(.0079) (.0108)

1980 .0674 1995 .1016
(.0109) (.0355)

1981 .0518 1996 .0620
(.0087) (.0121)

1982 .0597 1997 .0657
(.0072) (.0171)

POOLED
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We initially include a time polynomial of the form t (time, γ) = c+γ1timet+γ2time2
t +

γ3time3
t in the conditional mean of ln F (Ht). However, after some initial testing we con-

clude that only the linear time trend can be robustly estimated in most of our model

specifications, the other parameters in the time polynomial being insignificant and er-

ratic. Therefore we have a final error term specification of the form

εt = ln F (Ht)−X ′
tβ − γtimet − ρ

[
ln F (Ht−1)−X ′

t−1β − γtimet−1

]
(20)

The instruments used to control for the simultaneity of εt and the endogenous human

capital aggregates in Ht are lagged values of Ht itself. We present estimates based on

empirical moments such as

1

T

T∑
i=1

ε̂tHt−1−m−g where m = 1, ..., M

g ∈ {0, 1, 2}

where Ht−1−m−g = [H1,t−1−m−g , H2,t−1−m−g , H3,t−1−m−g]. Given this notation it fol-

lows that 3 (M + 1) is the number of moment conditions used in estimation. The index

g indicates the minimum lag that is employed as an instrument (e.g., when g = 0 we use

a specification with instruments dated between t− 1 and t−M).

The parameters to estimate in the final specification (20) are {β, ρ, γ} where β =

(A,B). Different sets of instruments are alternatively used. We report estimates of these

parameters under a set of moment restrictions which differ in the:

• choice of M ;

• choice of g;

• choice of the first step weighting matrix, that is either the identity (I) or the instru-

ment cross-product (Z ′Z);

To minimize the objective function we use a simplex method algorithm first pro-

posed by Nelder and Mead (1965). This method has the advantage to check whether

a candidate set of estimates is a real minimizing set by using a quadratic expansion in

the neighborhood of such set and verifying that the minimum of such quadratic form

corresponds to the minimum found by the Simplex56.

The results of the GMM estimation procedure of the log-linearized C-D technology

are reported in the following tables (standard errors in parenthesis). Notice that the total

number of observations (T ) available to compute the moments depends on the number

and lenght of the lagged instruments and is equal to 30− 1−m− g.

56We also run further check with a standard Powell-Newton algorithm using calculus conditions to identify a minimum.
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The final line of each table reports the objective function value (weighted sum of

empirical moments): this is a test of overidentifying restrictions and is distributed as a

χ2
3(M+1)−N where N = 4 is the number of parameters to estimate.

The first table reports results obtained by using: (i) dependent variable measured from

aggregate wage bills and physical capital augmented to account for residential wealth and

(ii) a weighting matrix is an identity matrix.

Dependent Variable Based on Wage Bills, First Step Weighting Matrix: I
g=0 g=1 g=2

M=1 M=2 M=3 M=1 M=2 M=3 M=1 M=2 M=3

A 0.177 0.719 0.497 0.371 0.497 0.428 0.305 0.260 0.234

(0.615) (0.178) (0.111) (0.279) (0.189) (0.127) (0.295) (0.200) (0.140)

B 1.058 -0.414 0.470 0.005 0.567 0.776 0.961 0.783 0.901

(0.722) (1.218) (0.330) (0.522) (0.363) (0.143) (0.244) (0.115) (0.088)

ρ 0.948 0.958 0.951 0.975 0.950 0.954 0.936 0.954 0.938

(0.032) (0.010) (0.012) (0.017) (0.015) (0.011) (0.018) (0.014) (0.013)

γ 0.022 0.049 0.043 0.051 0.040 0.034 0.032 0.036 0.036

(0.038) (0.010) (0.007) (0.012) (0.008) (0.006) (0.009) (0.006) (0.005)

T 28 27 26 27 26 25 26 25 24

func. 4.067 4.171 13.676 0.593 11.683 14.456 3.425 6.077 8.603

d.f. 2 5 8 2 5 8 2 5 8

χ2
(0.95) 5.991 11.070 15.507 5.991 11.070 15.507 5.991 11.070 15.507

The second table reports results based on the same dependent variable but with a

first stage weighting given by the positive definite matrix Z ′Z.

Dependent Variable Based on Wage Bills, First Step Weighting Matrix: Z′Z
g=0 g=1 g=2

M=1 M=2 M=3 M=1 M=2 M=3 M=1 M=2 M=3

A 0.395 0.775 0.468 0.404 0.615 0.548 0.295 0.284 0.299

(0.552) (0.188) (0.105) (0.278) (0.161) (0.139) (0.310) (0.207) (0.141)

B 0.964 -1.188 0.764 -0.029 1.420 0.770 1.042 0.790 0.850

(0.960) (2.106) (0.253) (0.552) (0.300) (0.188) (0.246) (0.123) (0.010)

ρ 0.951 0.958 0.944 0.972 0.929 0.950 0.934 0.952 0.939

(0.021) (0.010) (0.013) (0.016) (0.013) (0.011) (0.018) (0.014) (0.012)

γ 0.027 0.055 0.036 0.052 0.023 0.035 0.029 0.035 0.038

(0.034) (0.010) (0.007) (0.011) (0.009) (0.006) (0.010) (0.006) (0.004)

T 28 27 26 27 26 25 26 25 24

func. 3.838 2.878 13.765 0.743 8.785 14.729 2.941 6.254 9.262

d.f. 2 5 8 2 5 8 2 5 8

χ2
(0.95) 5.991 11.070 15.507 5.991 11.070 15.507 5.991 11.070 15.507
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5 Simulations

(to be completed) Each time unit represents a year and the parameters are based on

yearly estimates.

5.1 Preferences parameters

The parameters ν and λ of the period utility (2) jointly pin down the intertemporal

elasticity of substitution of consumption, that is 1
1−ν(1−λ)

. With ν = 0.33 and λ = 2.00

we have that such elasticity is roughly 0.75.

5.2 Demographic and cost parameters

Individuals are assumed to be born at the real age of 16, and they can live a maximum

of j = 50 years, after which, at the real age of 65, death is certain (the retirement age is

not considered in this analysis, so that agents die at the end of their working life). The

sequence of conditional survival probabilities {s}50
j=1 is based on mortality tables for the

US.

The cost of education De is expressed as a proportion of equilibrium earnings, whereas

the education subsidy Te.

5.3 Simulation Results

(to be added)

The most obvious tuition subsidy experiment is implemented by giving people, ceteris

paribus, a transfer (same for all) equal to a percentage of the direct cost of schooling.

The following table reports results of such experiments. At the bottom there are results

pertaining to a different kind of experiment based on substantial cuts to either earned

income tax rate or unearned income tax rate.
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Tuit. Subs. % workers Month. Salary 0 assets r

$92 $92 by edu $92, pretax % of pop. %

LTHS HS C LTHS HS C

Benchmark 5826 0 25.2 58.5 16.3 1111 2023 2899 12.2 3.92

50% subs. (PE) 4831 2415 5.3 16.2 78.5 921 1677 2403 5.7 3.92

50% subs. (GE) 5821 2910 25.2 58.4 16.4 1110 2021 2890 12.1 3.90

150% subs. (PE) 4868 7302 5.3 16.4 78.2 928 1690 2422 6.0 3.92

150% subs. (GE) 5840 8761 25.1 58.3 16.5 1121 2027 2889 11.9 3.87

cut K tax 2/3 (PE) 10411 0 36.8 29.9 33.2 1985 3615 5180 0.08 3.92

cut K tax 2/3 (GE) 5334 0 25.7 54.0 18.6 1015 1852 3079 15.9 4.14

cut L tax 2/3 (PE) 4996 0 6.7 20.6 72.7 953 1735 2486 8.9 3.92

cut L tax 2/3 (GE) 6651 0 20.4 52.4 27.2 1164 2310 1875 18.9 5.3

6 Conclusions

To be added.

Preliminary results are available for the UK. Simulations with US parameters to follow

shortly.
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A Definition of Stationary Measure

Stationary measure µ∗

Definition 1 Let (X,z (X) , ψj) be a measure space, where X = Θ × = × Z × Ā is

the state space and z (X) the σ-algebra on X. In order to define a stationary measure

ψj we need a transition function QX × z (X) −→ [0, 1] such that, for F ⊂ z (X) ,

ψj = Q (F, ψj).

In order to construct Q we define the following conditional probability γ = γ (π (·))

γ [x, y ∈ F ] = Pr {y ∈ F | x} =

=

∫

Z

π{zj+1 | zj} I {(θ, ej+1 (x) , zj+1, aj+1 (x)) ∈ F} dzj+1

which represents the fraction of agents transiting from x = (θ, e, z, a) ∈ X into F ⊂
z (X). I (·) is an indicator function.

We can then use γ (·) to define the stationary measure ψ∗j as

ψ∗j (F ) = Q
(
F, ψ∗j

)
=

∫

X

γ [x, y ∈ F ] dψ∗j (x)

There are conditions which guarantee the existence of a unique fixed point ψ∗j (.)

1. Monotonicity of the decision rules a (·), e (·), c (·) ; (sufficient condition);

2. Monotone mixing property of the measure µi, ∀i; (necessary condition).

B Analytical derivation of the market clearing condition

The budget constraint of a generic agent is described in equation (3) as

cj + aj+1 =

= [1 + r (1− τk)] (aj + qj) + we expεj nj(1− τne) (1− dj)− (De − Te) dj

Such expression can be simplified by using equation (9) to express qj, so that we obtain

cj + aj+1 = (21)

= [1 + r (1− τk)] aj + we expεj nj(1− τne) (1− dj)− (De − Te) dj

where a1 = q1, with qj = 0 and aj+1 = aj+1 (x) for j = 2, ..., j. Notice that E (q1) is

described in (9).

32



By integrating this expression using the population distribution µ (x, j) we obtain

j∑
j=1

ζj

[∫

X

cj (x) dψj (x) +

∫

X

aj+1 (x) dψj (x)

]
= (22)

= (1 + r (1− τk))

j∑
j=1

ζj

∫

Ā

aj dψj (a) +

+

j∑
j=1

ζj

∫

X

we expεj nj (x) (1− τne) (1− dj (x)) dψj (x) +

−
j∑

j=1

ζj

∫

X

Dedj (x) dψj (x) +

j∑
j=1

ζj

∫

X

Tedj (x) dψj (x)

Using the government budget constraint from equation (13) we can rewrite (22) as

G +

j∑
j=1

ζj

[∫

X

cj (x) dψj (x) +

∫

X

aj+1 (x) dψj (x)

]
=

= (1 + r)

j∑
j=1

ζj

∫

Ā

ajdψj (a) +

j∑
j=1

ζj

∫

X

we expε
(θ,e,z)
j nj (x) (1− dj (x)) dψj (x) +

−
j∑

j=1

ζj

∫

X

Dedj (x) dψj (x)

Now use the following relationships

1.
∑

j ζj

∫
Ā

aj dψj (a) = K (r)− FX (r) , by definition;

2. FK = r + δ , by profit maximization;

3. F (K, H) = FK K +
∑j

j=1 ζj

∫
X

we expεj nj (x) (1− dj (x)) dψj (x) , because F (K, H)

is homogeneous of degree 1;
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Using relationship (1) we can write the last equation as

G +

j∑
j=1

ζj

[∫

X

cj (x) dψj (x) +

∫

X

aj+1 (x) dψj (x)

]
= (23)

(1 + r) (K − FX) +

j∑
j=1

ζj

∫

X

we expεj(θ,e,z) nj (x) (1− dj (x)) dψj (x) +

−
j∑

j=1

ζj

∫

X

Dedj (x) dψj (x)

Then, using relationships (2) and (3) we obtain

G +

j∑
j=1

ζj

[∫

X

cj (x) dψj (x) +

∫

X

aj+1 (x) dψj (x)

]
= (24)

F (H, K) + (1− δ) K + (1 + r) FX −
∑

j

ζj

∫

X

Dedj (x) dψj (x)

which, using again relationship (1) can be written as

G +

j∑
j=1

ζj

[∫

X

cj (x) dψj (x) +

∫

X

aj+1 (x) dψj (x)

]
= (25)

= F (H, K) +
∑

j

ζj

∫

Ā

aj dψj (a)− δK − rFX −
∑

j

ζj

∫

X

Dedj (x) dψj (x)

This is exactly the goods market clearing equilibrium condition.

C FONCs and “Consumption Only” budget sets

Wages

Given the functional form of the transformation function and defining the generic

human capital factor H as

H =
{

A1H
ρ1

1 + (1− A1) [A2H
ρ2

2 + (1− A2) Hρ2

3 ]
ρ1
ρ2

} 1
ρ1

the equilibrium wages can be written in analytical form as

w1 =
∂F

∂H1

= (1− α)
F (H, K)

Hρ1
A1H

ρ1−1
1 (26)

w2 =
∂F

∂H2

= (1− α)
F (H, K)

Hρ1
A2H

ρ2−1
2 M (27)
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w3 =
∂F

∂H3

= (1− α)
F (H,K)

Hρ1
(1− A2) H

ρ2−1

3 M (28)

where M = (1− A1) [A2H
ρ2

2 + (1− A2) Hρ2

3 ]
ρ1
ρ2
−1

.

Preferences and Education Choice

The period utility function for an agent in full time education is

u (c) =

[
cνf e (θ)1−ν]

1− λ

(1−λ)

(29)

where f e (θ) is a monotonically increasing function of the innate ability parameter θ.

The period utility for an employed agent is instead

u (c, l) = u (c, 1− n) =

[
cν (1− n)1−ν](1−λ)

1− λ
(30)

The analytical forms of uc (c, l) and un (c, l) for this period utilitity of an employed

agent are

uc (c, l) =
(
cν (1− n)1−ν)−λ

νcν−1 (1− n)1−ν (31)

ul (c, l) =
(
cνl1−ν

)−λ
(1− ν) cνl−ν

so that ul(c,l)
uc(c,l)

=
(

1−ν
ν

) (
c
l

)
.

From the intratemporal margin we know that
(

1−ν
ν

)
c
l
= we expεe

(1− τn) and solving

this equality for n = 1−l we get the optimal supply of labor as a function of consumption

n = max

{
1−

(
1− ν

ν

)
c

we expεe (1− τne)
, 0

}
(32)

If we plug equation (32) into the period budget constraint of a working agent,(3), we

can cancel out labor supply and obtain a ’consumption only’ budget constraint

cj + aj+1 = [1 + r (1− τk)] aj + we expεj (1− τne)

(
1− 1− ν

ν

cj

we expεj (1− τne)

)

=⇒ ν (cj + aj+1) = ν [1 + r (1− τk)] aj + νwe expεj (1− τne)− (1− ν) cj

=⇒ cj + νaj+1 = ν [1 + r (1− τk)] aj + νwe expεj (1− τne) (33)

Finally, by using the intratemporal margin, we can express the period utility as a

function of consumption only

[
cν

(
1−ν

ν
c

we expε(1−τne)

)1−ν
](1−λ)

1− λ
=

[(
1−ν

ν
1

we expε(1−τne)

)1−ν

c

](1−λ)

1− λ
(34)
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Furthermore we can derive an analytical solution for the labor supply function nj =

nj (θ, e, z, a), given we. For notational simplicity we write eq.(33) as cj = νRaj + νw̃ −
νaj+1, where R = [1 + r (1− τk)] and w̃ = we expεj (1− τne). Then the optimal labor

supply function is given by

nj = max

{
1−

(
1− ν

ν

)
νRaj + νw̃ − νaj+1

w̃
, 0

}
(35)

= max

{
ν + (1− ν)

aj+1 −Raj

w̃
, 0

}

This expression is useful to analyze the life-long pattern of labor supply and is nothing

else than a weighted average of 1 and
aj+1−Raj

w̃
, with weights equal to ν and (1− ν) ν is

the fraction of labor supply directly related to providing utility through consumption,

whereas (1− ν) is the leisure-related component of labor supply, depending on income

and substitution effects.

Notice that
aj+1−Raj

w̃
≤ 1, if the budget constraint holds. If

aj+1−Raj

w̃
= 1 it follows

that nj = 1; if aj+1 = Raj then nj = ν. Finally, when
aj+1−Raj

w̃
≤ −ν

1−ν
we have that

nj = 0.

This simple relationship can go quite far in explaining the labor supply profile of an

agent with finite life as agents accumulate assets at the beginning of their life (that

is, when aj+1 > Raj) we can expect relatively high labor supply, whereas at later

stages in life, when agents deplete their asset stock, labor supply decreases and, if

w̃ = we expεj (1− τne) is small enough, it can get arbitrarily close to zero.

D The PSID Data

The Panel Study of Income Dynamics provides information on a variety of dimensions.

Since the beginning it was decided that those eligible for the 1969 and following waves

of interviewing would include only persons present in the prior year, including those

who moved out of the original family and set up their own households57. Until recently,

there used to be two different releases of PSID data, Release I (also known as Early

Release) and Release II (also known as Final Release). Early release data were available

for all years; final release data are available (at time of writing) only between 1968 and

1993. The variables needed for our study are available in both releases. The difference

is that Release II data tend to be more polished and contain additional constructed

variables. We use Release II data for the period 1968-1993 and Release I data for the

57A distinction between original sample individuals, including their offspring if born into a responding panel family
during the course of the study (i.e., both those born to or adopted by a sample individual), and nonsample individuals
must be made. Details about the observations on non-sample persons and their associated weights and relevance are
included in the appendix.
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period 1994-200158.

Because of successive improvements in Computer Assisted Telephone Interviewing

(CATI) software, the quality of the Public Release I files improved dramatically in recent

waves, allowing the use of these data with confidence. The differentiation between Public

Release I and Public Release II has recently been dropped altogether.

D.1 Sample selection

Unequal probabilities of selection were introduced at the beginning of the PSID (1968)

when the original Office of Economic Opportunity (OEO) sample of poor families was

combined with a new equal probability national sample of households selected from the

Survey Research Center 1960 National Sample. Compensatory weights were developed

in 1968 to account for the different sampling rates used to select the OEO and SRC

components of the PSID.

The probability sample of individuals defined by the original 1968 sample of PSID

families was then followed in subsequent years. A distinction between original sample

individuals, including their offspring if born into a responding panel family during the

course of the study (i.e., both those born to or adopted by a sample individual), and non-

sample individuals was also made. Only original sample persons and their offspring have

been followed. These individuals are referred to as sample persons and assigned person

numbers in a unique range. If other individuals resided with the sample individuals,

either in original family units or in newly created family units, data were collected about

them as heads, spouses/long term cohabitors or other family unit members, in order to

obtain a complete picture of the economic unit represented by the family. However, these

nonsample individuals were not followed if they left a PSID family.

Sample persons who are living members of a 1968 PSID family have a sample selection

factor equal to the reciprocal of the selection probability for their 1968 PSID family unit.

The computation of the sample selection weight factor for sample persons who are “born

into” a PSID family after 1968 uses a formula that is conditional on the “sample status”

of their parents. However, data for nonsample persons present a problem for longitudinal

analysis since the time series for these individuals is left censored at the date at which

they entered the PSID family. Furthermore, it is not likely that this left censoring is

random with respect to the types of variables that might be considered in longitudinal

analysis. Because of the left censoring of their data series, nonsample persons in PSID

families have historically been assigned a zero value selection weight factor and a zero-

value for the PSID longitudinal analysis weight59. This is of course a problem when using

58We also have results obtained from a reduced sample using only Release I data for 1968-1993: estimates of the
parameters of interest don’t substantially differ from the full sample estimates.

59Beginning with the 1993 wave, PSID is providing users with a file that includes special weights that will enable analysts
to include all 1993 sample and nonsample person respondents in cross sectional analysis of the 1993 PSID data set. These
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the core SRC: non sample people can be tracked through their Person 1968 number (that

assumes values between 170 and 228) and whenever we use individual weights we control

for the presence of non-sample individuals.

An additional dimension that is included in the core longitudinal weights are adjust-

ments for panel attrition due to nonresponse and mortality. Attrition adjustments were

performed in 1969 and every five years thereafter.

In general individual longitudinal weight values for PSID core sample persons are the

product of three distinct sets of factors, that can be summarized as follows:

1. a single factor that represents the reciprocal of the probability by which the sample

person was “selected” to the PSID panel;

2. a compound product of attrition adjustment factors developed in 1969 and every 5

years thereafter,

3. mortality adjustment factors also developed and applied in 1969 and every 5 years

thereafter.

A general formula that reflects the composite nature of the individual weights is:

Wi,1993 = Wi,sel ×
T∏

j=1969

[
Wi,NR(j) ×Wi,M(j)

]
(36)

where: Wi,sel is the selection weight factor – the reciprocal of probability that individual

i is selected to the PSID panel by membership in a 1968 PSID sample family or by birth

to a PSID sample parent; Wi,NR(j) is the attrition adjustment factor applied to the ith

individual weight at time period j; Wi,M(j) is the age, sex and race-specific mortality

adjustment applied to the ith individual weight at time period j60.

The 1967-1992 Final Release Sample

The 1968-1993 PSID individual file contains records on 53,013 individuals (that is,

all who were ever present in the sample at least on one year) We drop members from the

Latino sample added in 1990 (10,022 individuals) and keep a sample of 42,991 individuals.

We then drop those who are never heads of their household and we are left with a sample

of 16,028 individuals. We then drop all individuals who are younger than 25 and older

than 60, which leaves us with a sample of 13,399 individuals. Dropping observations for

self-employed people reduces the sample to 11,574 individuals.

We keep in our sample only people with at least 8 (possibly non continuous) ob-

servations, which leaves us with 4,529 individuals. Dropping individuals with missing,

zero or top-coded earnings reduces the sample to 4,300 individuals, and dropping in-

dividuals with total hours of work that are missing, zero or larger than 5840 further

weights are called cross-sectional weights (as opposed to the standard longitudinal weights that have been produced from
1969 onwards).

60Of course, non sample people have a zero weight because Wi,sel = 0 for them.
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reduces our sample to 4,295 individuals. We eliminate individuals with outlying earning

records, defined as changes in log-earnings larger than 4 or less than -2, which leaves

4,211 individuals in the sample.

Finally, dropping people who are connected with the original SEO low-income sample

leaves us with a sample of 2,371 individuals.

The composition of the sample by year and by education group is reported in the

following tables.

Table 4: Distribution of observations for the 1967-1992 sample, by year
year Number of Observations year Number of Observations

1967 783 1980 1575
1968 853 1981 1551
1969 906 1982 1551
1970 965 1983 1586
1971 1090 1984 1636
1972 1192 1985 1656
1973 1280 1986 1610
1974 1328 1987 1535
1975 1382 1988 1484
1976 1428 1989 1415
1977 1489 1990 1349
1978 1513 1991 1285
1979 1550 1992 1201

Table 5: Distribution of observations for the 1967-1992 sample, by education group
years of education Number of Individuals Number of Observations

less than 12 330 4,804
12 to 15 1,354 19,902

16 or more 687 10,487

Add discussion on sample and non-sample individuals (SEQUENCE # 170-228 -

THERE ARE NONE IN OUR SUBSAMPLE !

The 1967-2000 Mixed (Final and Early Release) Sample After dropping

10,607 individuals belonging to the Latino sample and 2263 individuals belonging to

the new immigrant families added in 1997 and 1999, the joint 1967-2001 sample contains

50,625 individuals. After selecting only the observations on household heads we are left

with 19,583 individuals.Dropping people younger than 25 or older than 60 leaves us with

16,733 people. Dropping the self employment observations leaves 13,740 persons in the

sample. We then select only the individuals with at least 8 (possibly non continuous) ob-

servations, which further reduces the people in the sample to 5559. Dropping individuals
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with unclear education records leaves 5,544 people in sample. Disposing of individuals

with missing, top-coded or zero earnings reduces the sample to 5,112 individuals and

dropping those with zero, missing or more than 5840 annual work hours brings the sam-

ple size to 5,102 individuals. We eliminate individuals with outlying earning records,

defined as changes in log-earnings larger than 4 or less than -2, which leaves 4,891 indi-

viduals in the sample. Finally, dropping people connected with the SEO sample reduces

the number of individuals to 2,791.

The composition of the sample by year and by education group is reported in the

following tables.

Table 6: Distribution of observations for the 1967-2000 sample, by year
year Number of Observations year Number of Observations

1967 776 1983 1546
1968 842 1984 1582
1969 891 1985 1609
1970 952 1986 1632
1971 1069 1987 1624
1972 1168 1988 1631
1973 1250 1989 1639
1974 1290 1990 1600
1975 1342 1991 1628
1976 1385 1992 1564
1977 1442 1993 1551
1978 1466 1994 1486
1979 1502 1995 1437
1980 1535 1996 1363
1981 1512 1998 1293
1982 1505 2000 1191

Table 7: Distribution of observations for the 1967-2000 sample, by education group
years of education Number of Individuals Number of Observations

less than 12 364 5,358
12 to 15 1,621 25,358

16 or more 806 13,587

D.2 Testing 2nd Order Moments of the Labor Shocks

After computing autoregressive coefficients for the labor shocks we also provide some

tests of the goodness of our specification, based on the covariance matrices of the labor

shocks. This paragraph describes the procedure.
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Main references: Gary Chamberlain (Panel Data, Chapter 22, Handbook of Econo-

metrics, Volume II, edited by Z.Griliches and M.D.Intriligator, 1984), Abowd and Card

(Econometrica,1989), Richard Dickens (Economic Journal, 2000).

Suppose we have observation on some variable X that is indexed by individual and

time period, that is we have observations {x}it, where i denotes an individual between 1

and n, and t denotes a year between 1 and T .

Define a vector

di =




di1
...
...

diT




where dit is an indicator variable such that: dit = 1 if the individual is present in year t

of the panel; dit = 0 otherwise; and T is the total lenght of the panel.

Analogously we can define a vector

xi =




xi1
...
...

xiT




where xi1 can be the error terms we are studying. Since our panel is unbalanced the

elements of xi corresponding to missing years of data are set to zero.

If we define a cell-by-cell scalar product operator between conformable matrices A

and B as follows

A×̇B =




A11 ×B11 · · · A1n ×B1n
...

. . .
...

An1 ×Bn1 · · · Ann ×Bnn


 and A�̇B =




A11

B11
· · · A1n

B1n
...

. . .
...

An1

Bn1
· · · Ann

Bnn




then the covariance matrix of X across years is computed as

C =
n∑

i=1

xix
′
i�̇D

where D is defined as

D =
n∑

i=1

did
′
i

The ratio used to estimate covariances can also be written as


C1,1

D1,1

C1,2

D1,2
· · · C1,T

D1,T

C2,1

D2,1

C2,2

D2,2

...
...

. . .
CT,1

DT,1

CT,T

DT,T



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where each entry in the matrix C is divided by the corresponding entry in D.

In order to perform tests on the estimated covariances we first define a vector m

composed of the elements of the covariance matrix C, that is m = vech (C).61

Let mi be the distinct elements of the individual cross product matrix xix
′
i and let

pi be a vector

pi =




pi1

pi2
...

piT




whose elements take value 1 if the corresponding element in the vector mi is different

from zero and value 0 otherwise. We can then define a (T × T ) matrix

P =
n∑

i=1

pip
′
i

which tells us how many non zero elements are summed within each cell of the Q matrix

of uncorrected fourth moments of vector xi

Q =
n∑

i=1

mimi
′

If we let the vector of deviations (mi −m) have zero elements whenever mi is zero, the

cross-sectional variance of the individual cross-products mi is estimated as

V =
n∑

i=1

(mi −m) (mi −m)′ �̇P

Notice that Q and V are related by V = Q�̇P −mm′. Define now S = V ech (D). Under

general conditions (Chamberlain, 1983, 1984), independence of the xi implies that the

sample mean of mi has an asymptotic normal distribution

√
S×̇ (m− µ) ∼a N (0, V ∗)

where µ is the expectation of mi (that is the true covariance value) and V ∗ = E (mim
′
i)−

E (mi) E (m′
i).

In finite samples we can approximate V ∗ by using the estimated V̂ , which is the

empirical equivalent.

Finally we define

Ň =
√

S
√

S
′

and we use V̂ to construct a new matrix U = V̂ �̇Ň . A typical element of the matrix

U is Uuv = cov (mu,mv). Here mu = cov (xitxit−k) and mv = cov (xisxis−j) are both

61Since C is symmetric we know that m has T (T + 1) /2 elements.
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elements of the m vector. The asymptotic standard error of the element mu of m is given

by (U)1/2.

Furthermore, it can be shown that, for

m′U−1m ∼a χ2
(dim[m])

under the null that all the elements of m are zero62. Of course we could select appropriate

elements of m and V to run join tests of zero restrictions.

If we want to look at the covariance matrix based only on the lag of t, regardless of

the specific year, we can define

C̄0 =

∑T
t=1 Ct,tDt,t∑T

t=1 Dt,t

and in general

C̄j =

∑T
t=1 Ct,t−jDt,t−j∑T

t=1 Dt,t−j

D.3 Estimation of the technology parameters

The Minimization Problem

The minimization problem we face in order to identify the technology parameters is

the following

min
{P}N∈<N

{
F̂ (H)− Φ (H1, H2, H3, {P}N)

}2

where {P}N is a set of N parameters of the (possibly non-linear) function Φ (•).
If we consider the case of a nested CES-CES function we can write the above problem

as

min
{A,B,r,s}∈<4

{
F̂ (H)−

{
AHr

1 + (1− A) [BHs
2 + (1−B) Hs

3 ]
1
s

} 1
r

}2

Of course, depending on the procedure used to obtain F̂ (H), the residual term will be

a different object.

62In fact, following Newey (1985) we would have that

mR−m′ ∼ χ2
(dim[m])

where R− is a generalised inverse of R = WUW ′ and W = I −G (G′AG)−1 G′A. The matrix A is a conformable positive
definite weighting matrix (often an identity matrix) and G is normally the matrix of first derivatives of some function that
is fitted to the covariance structure and has dimension dim [m] × p∗ where p∗ is the number of parameters in the fitted
function. In our case however p∗ is equal to zero, which makes G a matrix with dimension dim [m] × 0 (or we can think

of it as a matrix consisting of zeroes only). Therefore W = I −G (G′AG)−1 G′A = I and we get the distribution result.
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To see this more clearly, consider a log linearisation of the problem above, such that

we can write

F̂ (H) ≈
{

AHr
1 + (1− A) [BHs

2 + (1−B) Hs
3 ]

1
s

} 1
r
expg

log
(
F̂ (H)

)
=

1

r
log

({
AHr

1 + (1− A) [BHs
2 + (1−B) Hs

3 ]
1
s

})
+ g

where g is an error term capturing measurement error due to wage mis-reporting and

errors in the approximation of the aggregate K.

Non Linear Method of Moments (Minimum Distance Estimator)

Consider the original problem where we define the residual of our estimation as

log (F (H))− 1

r
log

({
AHr

1 + (1− A) [BHs
2 + (1−B) Hs

3 ]
1
s

})
= e

Of course there will be one such residual for each time period in the sample. We denote

therefore a (column) vector of residuals with T elements as

[R]Tt=1 =




e1

e2
...

eT




Two potential problems must be considered when minimizing the sum of such resid-

ual distances: (i) simultaneity in the determination of residuals and production inputs

(human capital aggregates). This problem arises if error components (contained in the

residual as defined above) also determine the employment decisions of agents in the econ-

omy. In this case we might expect a correlation between control variables and residuals

which undermines the reliability of estimates of technology parameters63; (ii) The resid-

uals, as defined above, might be characterized by a certain degree of autocorrelation over

time which should be accounted for.

If none of the above mentioned problems was present, we could apply a very simple

minimum sum of squares estimator, using the time vectors {H1t, H2t, H3t, } as regres-

sors. Denoting the transpose of a matrix X as X ′, we could write the simple non-linear

minimization problem as

min
{A,B,s,r}

R′ (A,B, s, r) Ω−1R (A,B, s, r)

where Ω is some (diagonal) weighting matrix used to account for possible heteroschedas-

ticity of the residuals over time. In the homoschedastic case Ω = σ2I (the identity

matrix).

63In this case {H1t, H2t, H3t, } would be correlated with the residual dated t.
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If there was a problem of simultaneity in the determination of {H1t, H2t, H3t, } and

Rt the above method would not provide consistent estimates.

One way to control for the effects of simultaneity is to exploit orthogonality conditions

that may hold between the residuals as defined above and some L×T matrix Z composed

of L variables with T time observations per variable. We suppose that the number of

variables L is sufficient to identify the parameters of the model, that is L ≥ N and we

assume that Z is correlated with {H1t, H2t, H3t, }. The instruments’ matrix is such that

E (R′Z) = 0 and E
({H1, H2, H3}′ Z

) 6= 0.

In general, we might have more IV’s than parameters to estimate. In this case

we cannot expect to satisfy the empirical counterpart of the population orthogonality

conditions presented above because we have a system of L > N equations

R̂′Z = m (PN)

in only N unknowns. It is therefore reasonable to replace the unattainable requirement

that R̂′Z = 0 with the requirement that R̂′Z be small in some norm. Ignoring any

multiplicative terms involving the sample size T , a candidate distance we might use as

an objective function to minimize is

NORM = R̂′ZΩ−1Z ′R̂

Hansen (1982) has shown that under some regularity assumptions, minimizing the NORM

above produces a consistent estimator of the parameters PN , and we can use any posi-

tive definite matrix Ω that is not a function of PN .64 The question is again what kind

of weighting matrix Ω should be chosen. A natural way to proceed is to set Ω to the

covariance matrix of the orthogonality conditions, that is

Ω = COV
(
R̂′Z

)
= E

{
Z ′R̂R̂′Z

}
= Z ′E

(
R̂R̂′

)
Z

Unfortunately Ω is unknown and this adds to the estimation burden. However, if the

covariance matrix can be written as Ω = σ2Ω̃ we can consider σ2 an arbitrary constant,

rather than a separate unknown parameter: in fact, since Ω̃ is an unknown matrix,

it can be arbitrarily scaled by some factor c, and if we rescale σ2 by 1
c

the product

Ω = σ2Ω̃ remains the same. An example in which we could ignore σ2 when minimizing

the objective function is the classical case when E
(
R̂R̂′

)
= σ2I. This leads to the

estimator

PN = arg min R̂′Z
(
σ2Z ′Z

)−1
Z ′R̂ = arg min R̂′℘ZR̂

64The general result is that if Ω is a positive definite matrix and if

p lim R̂′ (PN ) Z = 0

then the minimum distance (GMM) estimator of PN is consistent.

45



where ℘Z = Z (Z ′Z)−1 Z ′ is the standard projection matrix in the Z−space. This is not

different from a non-linear two stage least squares estimator, however it is more general

in the sense that we are not limited to the above choice of Ω.

Any positive definite matrix Ω that is constant will deliver consistent estimates.

However, efficiency of such estimates depend on the choice of the weigthing matrix Ω.

Hansen has shown that Ω = Z ′ΣZ where Σ = E (RR′) is in fact an optimal choice.

When no time correlation is present we can therefore summarize the estimator ma-

trix products as follows. The sample equivalent of the theoretical moment condition

E (R′Z) = 0 is

1

T
R̂′Z =

1

T

T∑
i=1

êiz
′
i = 0

where z′i =
(
z1

i , z
2
i , . . . , z

L
i

)
, so that the norm to minimize is

NORM =
1

T

(
T∑

i=1

êiz
′
i

)
Ω−1 1

T

(
T∑

i=1

êizi

)

The sample equivalent of the weighting matrix Ω = Z ′ΣZ is the (L× L) White dispersion

matrix, which is

Ẑ ′ΣZ =
1

T 2

T∑
i=1

ziz
′
iê

2
i

and therefore we can express the objective function as

NORM =
1

T 2

(
T∑

i=1

êiz
′
i

)(
1

T 2

T∑
i=1

ziz
′
iê

2
i

)−1 (
T∑

i=1

êizi

)
=

T∑
i=1

êiz
′
i

(
T∑

i=1

ziz
′
iê

2
i

)−1 T∑
i=1

êizi = R̂′Z
(
Ẑ ′ΣZ

)−1

Z ′R̂

For consistency of the estimates it is necessary that Ẑ ′ΣZ is constant when minimizing

the above NORM. Using Ẑ ′ΣZ = I will deliver consistent but inefficient estimates.

Estimation of any other Ẑ ′ΣZ requires that some estimate of PN is already in hand,

even if PN is the object of estimation: such estimate of PN used to construct Ẑ ′ΣZ may

not be efficient but must be consistent in order to improve the efficiency of the main

estimation procedure. This still leaves the open question of where to find the first round

consistent estimator of PN ; one possibility is to obtain an inefficient but consistent GMM

estimator by using Ẑ ′ΣZ = I and then use the resulting estimator to construct Σ̂ which

can be used to re-compute the NORM to minimize.

The GMM Covariance Matrix
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Given the point estimates obtained from the minimization problem outlined before,

we are interested in obtaining a (asymptotic) covariance matrix. Using a standard strat-

egy, we can recover the asymptotic behavior of the estimator.

In general, ignoring the averaging factor 1
T
, the matrix Ω = Z ′ΣZ is equal to

T∑
i=1

T∑
j=1

ziz
′
jCOV (êi, êj)

where z′i is the i−th row of Z , and if we denote zl
h as the h−th observation of instrument

l we can rewrite this product as

Z ′ΣZ =
T∑

i=1

T∑
j=1




z1
i

z2
i
...

zL
i




(
z1

j z2
j · · · zL

j

)
COV (êi, êj) =

T∑
i=1

T∑
j=1




z1
i z

1
j z1

i z
2
j · · · z1

i z
L
j

z2
i z

1
j z2

i z
2
j · · · z2

i z
L
j

... · · · . . .
...

zL
i z1

j · · · · · · zL
i zL

j


 COV (êi, êj)

Assuming that this double summation divided by 1
T 2 converges to a positive definite

matrix, its estimation relies on the current estimates of the parameters PN .If residuals

are uncorrelated over time, the cross terms can be omitted as COV (êi, êj) = 0 when

i 6= j and we have that

Z ′ΣZ =
T∑

i=1

ziz
′
iV AR (êi)

which can be written in more extensive form as

Z ′ΣZ =
T∑

i=1




z1
i

z2
i
...

zL
i




(
z1

i z2
i · · · zL

i

)
V AR (êi) =

T∑
i=1




z1
i z

1
i z1

i z
2
i · · · z1

i z
L
i

z2
i z

1
i z2

i z
2
i · · · z2

i z
L
i

... · · · . . .
...

zL
i z1

i · · · · · · zL
i zL

i


 V AR (êi)

The White variance matrix estimator approximates this as

Ẑ ′ΣZ =
T∑

i=1

ziz
′
iê

2
i =

T∑
i=1




z1
i z

1
i z1

i z
2
i · · · z1

i z
L
i

z2
i z

1
i z2

i z
2
i · · · z2

i z
L
i

... · · · . . .
...

zL
i z1

i · · · · · · zL
i zL

i


 ê2

i
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For the autocorrelation case, we can either use the Newey-West estimator of Z ′ΣZ or we

can explicitly control for the presence of autocorrelation in residuals.

Testing

One of the additional benefits of the GMM testing method is that whenever the PN

is overidentified (L > N) the minimand is also a test statistic for the validity of these

restrictions. Under the null hypothesis that the overidentifying restrictions are valid it

can be proven that

NORM =
T∑

i=1

êiz
′
i

(
T∑

i=1

ziz
′
iê

2
i

)−1 T∑
i=1

êizi ∼a χ2 (L−N)

This test does not however give any indication about the validity of all the instrumental

variables, but answers the simpler question: given that a subset of the instrumental vari-

ables is valid and exactly identifies the coefficients, are the extra instrumental variables

valid ?
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